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Bifurcation of quantum nonlinear resonances induced by a time-periodic vector potential
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The quantum mechanics of a two-dimensional ideal electron Fermi gas in a cylindrical cavity in the presence
of a weak time-periodic vector potential is studied. Floquet eigenstates are obtained numerically and Husimi
distribution functions are used to show the bifurcation and appearance of quantum nonlinear resonances. For
electrons at the Fermi surface, if the frequency of the vector poteatjas lower than a certain critical
frequencyw,, then there is no electron having a primary resonanceylfs higher thanw,,, electrons with
certain angular momenta will have primary resonanf®%063-651X97)03203-0

PACS numbsgs): 05.45:+b, 03.65.Sq, 73.20.Dx

. INTRODUCTION try, the angular momentumy, of the electrons is a conserved

The transition to chaos in classical systems occurs in requantity (H,p,]=0). As a consequence, the system can be
gions of the classical phase space where self-similar sets ¢feated as a system with one degree of freedom, along the
nonlinear resonances exist, grow, and overlap as a paramet@dial direction.
of the system is changed. Nonlinear resonances have also We can induce chaos in this system with a weak
been observed in the quantum counterpart of these systentgne-periodic radial vector potential. We can create the radial
although they only form self-similar families down scales invector potential in the following manner. Let us assume
the phase space of ord&r[1]. The effect of an underlying the electron has mass and charge and at the center of the
classical chaos on the quantum counterpart of these systen@cular cavity there is a fiber of negligible radias that
especially systems with a periodic time-driven potential, is shas a weak confined alternating magnetic flycost)
topic that has received much attention recently. To investiwith frequencyw,. We assume that the only effect of the
gate those systems quantum mechanically, the Flogudiber is to provide a time-periodic vector potential in
theory has been us¢@—4. the circular two-dimensional cavity. It also imposes the

The model we consider consists of a two-dimensionaboundary condition¥(r=0,4)=0 on the electron wave
(2D) noninteracting electron gas confined by a circular hardunctions. We will ignore interactions between electrons. For
wall of radiusb. We will describe the system in cylindrical small o, [(wg/c)b<1], the Schrdinger equation has
coordinates I(, ¢). Because the system has circular symme-he form

J 2
o¥ | [p—eA(r,1)]? W22 52 g |Tag B oodw)

= T am V(D) W= e o ar 2mr?

TVa(N+ V() | ¥, (D)

WhereA=(<I>0/27-rF)cos(w0t)e¢, B=edy/2m, andV, and Husimi plots of the Floquet states are used to compare re-
V, are potentials associated with infinitely hard walls atsults from classical and quantum mechanics. In Sec. lll,
r=a andr=b. (See the Appendix for the classical Hamil- Properties of electrons with the Fermi energy are examined.
tonian and the exact form of the vector potential of thisFinally, in Sec. IV, we make some concluding remarks.
model)

In a previous papef5] on the classical version of this
system we found that the frequenay plays an important Il. ONE-ELECTRON SYSTEM
role in determining the manner in which chaos appears in the A. Free Hamiltonian (8=0)
system. For a given classical angular momentumgpgén- N
creases there is a frequency at which nonlinear primary reso- It is useful to study the free Hamiltoniahi, (when
nances start to emerge and also bifurcate immediately. Th8=0) before considering the full Hamiltonian. The eigen-
frequencyw, also determines the locations of primary reso-states of the unper'Eurbed system are simultaneogs eigenstates
nances in phase space. of the HamiltonianH, and the angular momentupy, . We

In Sec. Il, we first obtain the energy eigenstates of thedenote the simultaneous eigenstate§l ag so that
unperturbed systemB=0) and then use these to obtain the A R
Floquet eigenstates of the full Hamiltonian of the model. Holl,n)=E [l,n), pyll,n)=I%|l,n). 2)
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FIG. 1. EnergiesE, , and E{'(J) from quantum and classical FIG. 2' Frequencies w =(E;n+1—En)/A  and
mechanics with respect to the quantum numbeand the action o(J3)=dEf(3)/dJ from quantum and classical mechanics with

J, respectively.(a) L=104. (b) L=100s. Solid curvesE=Ef'(J) respect to the quantum numhbernd the action) respectively(a)

— — H _ cl P
show classical results and point® ) E=E, , show quantum re- L=10%. (b) L=100%. Solid curvesw=w(J) show classical re-
sults. ’ sults and points ¢ ) w=w, , show quantum results.

The energy eigenvalue problem in real space is given by bifurcation anq creatipn of new resonances as the frequency
of the magnetic flux is varied. From Fig. 2 we see that the

K2 82 K% 4 1 & quantum system will not always have a minimum because
T omar? Zmrar 2mi2 942 —5 T Va(r)+Vp(r) the action variaple is .q'uantize_d. For angular momentum
L=10% the classical minimum lies below the lowest quan-
X(r,¢|l,n)y=E, o{r,¢|l,n), 3 tum state so no bifurcation can occur in the quantum system.
However, for angular momentuin= 100 there is hope of
with the energy eigenstates seeing a bifurcation in the quantum system because the mini-
mum does exist. L
2 ar) 1 o Let us define an enerdy, such that, for the electron with
<r'¢|l’”>:bjl+l(al Tb) b \/Ze 4 the angular momenturh=1# the frequencyw®(J) has a

minimum valuew, i, at energyE=E . From the quantum

for |I|=1 and n=1. The energy eigenvalues are energy eigenvalues, we find that fos}l|<11, E <E,g;
En=(h2mb?)(af/2), where @, is the nth zero of for 12<|I|<25, E,; ;<E <E,,; for 26<|I|<40, E, ,<E_
Ji(x), the Bessel functions of the first kindStates with <E, 3, and so on. Thus the location & shifts to higher-
|=0 are excluded due to the boundary condition of ourenergy states d$| is increased.
model¥|,_,=0. We assum@a=0.)

This system may also_ be s_tudied classicé_lﬂy and some B. Full Hamiltonian (B+0)
key results are summarized in the Appendix. We can com- . L )
pare the energy e|genvaIuEs for the quantum system _The full Schram_nger_ eqL_Jatlon is given in Eq1). We can
with the energyE®(J) of a classical particle in the circular Wité the full Hamiltonian in the form
cavity, wherel is the classical action defined in the Appen- -
dix. The quantization condition from the semiclassical theory A(t)=Hqy— ,3
J=(n—3)% is used[6] to get the relation between the clas-
sical actiond and the quantum number In Fig. 1 we com-
pare classical and quantum energies for angular momentghe full Hamiltonian has two perturbation terms: one pro-
L =104 andL=100%, respectively. They agree to very good Portional tog with frequencywoAanAd another proportional to
accuracy even at low energies whetg andn are small. 82 with frequency 2. Since[H,p,4]=0, the angular mo-
We can also compare the quantum frequenciesnentum is still a constant of motion and the radial and an-
w| n= =(E, h+1—E n)/h with the classical natural frequency gular motions remain decoupled. However, the radial motion

(J) dEC'(J)/dJ In Fig. 2 we compare classical and now is affected by a time-periodic potential energy that con-
quantum frequencies for angular momerita=10% and tains two different frequencies, and 2w,.
L =100%, respectively. Since the action variable can take on In Ref. [5] we found for the classical system that the
a continuous range of values, the classical frequency wilfesonance condmon for theth primary resonance due to the
always have a minimum value. It is this feature that allows g3 term is wo=rvw (J) Similarly, the resonance condition

®)
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for the wvth primary resonance due to thg? term is

w0=(v/2)wE|(J). Let w_ min denote the minimum value of 3 }L(a)
the classical frequenQyE‘(J), i.e., the point where the bifur- g
cation can occur. Then, iby<3w_ min, there is no primary EEO
resonance and as, reaches;w _mi, the primary resonance B
due to the,B term starts to emerge and bifurcate immedi- 2|
ately [ wo=30{ 1(3) has two solutions ifwo> 2wL'mm]. Fur- 2‘(b)
thermore, ifwq reachesy| ni,, the primary resonance due to % ‘[
the B term starts to emerge. 2

In the quantum system, as we saw in Fig. 3] ifis small £
a bifurcation cannot occur becausg, does not have two
branches. On the other hand, for laitje we can expect that —ZZA ‘
the bifurcation process exists in quantum mechanics. We can )
view this as a kind of suppression of resonances due to the £
finiteness off. (For fixedL, the smalleri, the larged.) 20

In order to see this bifurcation process occur in the quan- L
tum system, we will compute the Floquet eigenstates and o

show their behavior in the classical phase space using Hu- 0 1
simi distribution functiong7]. The procedure to obtain Flo- 7
guet states is as follows. The full time-periodic Hamiltonian FIG. 3. m=006#n,, b=1 um, B=5h, L=100i, and
e
H(t) [H(t)=H(t+To) with To=2m/wo] can be represented ©00=0.9973@ mif2). ©_ m/2=5.428<10'" Hz in this case(a)
in the basig{|I,n)}, Classical strobe plot(b) and (c) Husimi plots with d=0.0309
um.

a | ’ oA
H(t)_% IEn Hion (081,011, ©) where ), is the Floquet eigenvalue, sometimes called the
quasienergy. After solving the eigenvalue problem, we have
where representations dfl Floguet stateg| ,n|\If'F’a) (1sa<N).
\2 ((I,n|‘lf'F’u) obtained from the tlruncated Hamiltonian is a
[ ~ good approximation only ifl,n| ¥ ,) has all its support on
Hon (0= (2mb2>{a'” O~ ”“’[ZI'B coswot) states |I,n) with n<N.)tFo|r gééh Floguet eigenstate
~, |‘I’|F,a>: we can compute the Husimi distribution function
— B?coS(wet)1}, (7

Fla(roaprO)EKrOaprO;l|q,|F:,a>|2’ (11)

where|rq,pro;1)=Iro.Pro)|l), |r0,Pro) iS @ coherent state,
which in the position representation has the form

with L=1#, 8= B#, and

l 2

' = Jis1(an) e 1(an

1
c ] fo dx J(anx) (@) X)/X.

1/4
. (rlro.pro) _(W)
In order to compute the Floquet states numerically we Jri2m
must truncate this matrix, but we can do it in such a manner

2 .
that the results we are interested in are not affected. In terms _(rmrg” i _
. - . Xexp — gz —+ 7 Pro(r—ro) |, (12
of the NX N truncated matrix, the Schdinger equation be- 4d h
comes

and|l) is an eigenstate q?i¢. Thus the coherent state is a

d Gaussian wave packet im,p,) space centered at{,p,o)
lfi ‘I’n(t)— E H L (OP (1), (8 with dispersionsAr=d, and Ap,=#/2d. We should note
that the use ofr|rq,p,o) for a system with hard walls does
not accurately represent the system very near the hard wall.
However, it is not a serious problemdfb<<1 unlessr is
close to the wall. Then, an appropriate choicelad$ impor-
tant in the Husimi plots. For all Husimi plots in this paper,
d was chosen to make the lengths of the dispersibns d

where W!(t)=(l,n|¥(t)). We integrate the equatiol
times from t=0 to t=T, with initial conditions
|¥(t=0))=|l,n) (1=n=<N). Each integration gives us one
column of the matrix representation of the evolution operator

U(To), which satisfy the equation andAp,=7%/2d the same. The ratid/b was about 0.03 for
- all Husimi plots in this paper. The values Iét(ro,pro) near
|W(t=To))=U(To)|W(t=0)). (9 the walls are not reliable. However, due to the boundary

) ) ) conditions, the Floquet states go to zero at the walls and
IElgenve.ctors o'f this unitary operator are the Floquet StateﬁereforeF'a(ro,pro) also goes to zero at the walls so the
|WE o), which satisfy difficulty with coherent states near the walls is not a serious

. . problem.
[ [ . : ,
U(To)|WE ) =€ PTo| W ), (10) In Figs. 3-5, we observe the emergence and bifurcation
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FIG. 6. Example of the first primary resonance due to ghe
term when m=0.06 ., b=1 um, B=5#A, L=100, and
wo=1.15%0 pi,=6.269x 10 Hz. (a) Classical strobe plotb) and
(c) Husimi plots withd=0.0309um.

results, i.e., we can find a corresponding classical orbit in the

wg increases neéwL‘mm in both classical and quantum me- Strobe _plot for each Husimi plot of a Floquet state. For each
chanics. In these figures, we have shown three casese(Figs. 3—5, we choose two Floquet states that represent

0o=0.9973@_ mif2) (Fig. 3. wo=1.001(, m/2) (Fig.

the case best. For the caseuf=0.9973 @, min/2), Floquet

4), and wy=1.008(w, min/2) (Fig. 5. (We use numbers ap- stlates in Fig_s. @) and 3c) correspond to distorted orbits in
plicable to microstructures formed at the interface betweefrig. 3@, which shows no resonance zone. For the case of

GaAs and AlGa;_,As: m=0.06"m,

b=1um, and
®L min=27L/mb?*=1.086x 10" Hz whenL = 1004, where

wo=1.001(w, mir2), we observe a resonance zone has
emerged. The Floquet state in Figb# corresponds to the

me is the mass of the bare electrpiClassical strobe plots Unstable fixed point near 0.7 um, p,=0) and the Flo-
show how bifurcation occurs continuously. On the otherquet state in Fig. &) corresponds to an orbit surrounding
hand, the Husimi plots are not as clear as strobe plots. Howthat point. They both come from the same resonance zone
ever, we can observe the quantum counterpart of classicépoth are mixed states ¢f=100, n=4—6) mostly). On the
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FIG. 5. m=0.067m,,
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7 (um)

b=1 um, B=5#, L=100"h and
wo=1.008_ minf2). ®L mi/2=5.428<10" Hz in this case.(a)
Classical strobe plot(b) and (c) Husimi plots with d=0.0309

other hand, the case afy=1.008(w_ ,i/2) has two separate
resonance zones. The Floquet state in Fifj) Emixed state

of |I=100, n=8-12 mostly corresponds to the stable
fixed point near (=0.65 um, p,=0) in Fig. 5a) and the
Floquet state in Fig. &) (mixed state ofl =100, n=4-6)
mostly) corresponds to the stable fixed points near
(r=1um, p,=*+0.95x10 26 kg m/sec) in Fig. ). We

can say that the resonance zone for the quantum system has
bifurcated as it does for the classical case. There was no
bifurcation wherlL = 10% as expectedplots are not shown in

I<Lnl¥, >

0 20 40 60 80 10
n

FIG. 7. Collection of probability distribution of Floquet states
(K1,n[WE )2 vsn for 1<a=<100).
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this paper because as we show in Fig(ap there are no 2
guantum states available to support the resonance. (a)
For the later use, we also look at an example of the first

primary resonance due to the term whenL=100% and
wo=1.1550 in=725.7i/mb?). From the equation
W= wf'(J), we can find that neal=21% (n=21) we have

a resonance zongSee Fig. 2).] In Fig. 6 we observe clas-
sical and quantum resonances for this case. Figure 7 is the

1073 wry/ (h/mb?)

diagram that is the collection of probability distributions of 00 100

all Floquet states (£a<100) with the basis ]
{|1,n),1<n=<100. It enables us to look at the states glo- 0.005

bally as we do in classical strobe plots. For example, we can b (b)

distinguish irregular and regular zones; near21 we have Fi

a resonance zone with the width of about 20 and there is
another small resonance zone nea+60 that is a fractional
resonance satisfying the resonance condiﬁjﬁ(\])=§wo.

We will ignore the scatter of points far>90 because the
truncation error is not small in that region.

The half-width AJ) of eachwvth primary resonance due 0 100 180
to the 8 term can be calculated approximately classicgsly i
by introducing the Hamiltonian that isolates the resonance

term, FIG. 8. When b=1 um, the Fermi energye becomes
(i%Imb?)(2.0x10%). I is 189.(a) wg, (the natural frequency of
HC'(J, 0)=Hy(J)+V(J)cog vh— wyt). (13 Fermi electrons with respect ty, and(b) P ;=Ng, /Ng (the frac-
tion of Fermi electrons with angular momentud, which can be
Then the half-width of this resonance &&J' is approxi- interpreted as the probability of finding Fermi electrons with the
mately angular momentum I%  within all Fermi electrons
NFEE|f|FNF,I .
' -1
(A)=2|V(3")|[dw(3)/dI]; 2, (14)
wherew(J) =dHo(J)/dJ. ol whereN,, can be regarded as the total number of electrons in
For our modelV(J)=—(Lg/2m)b,(E (J),L), the system (X10* for the system considered here with
. e-=3.6x10"21 J). For a given Fermi energy there is an
bV(E,L):ZmEJ' . 2d6 cog v 6) s, upper limit |z of the angular momentunji| because the
—n L2+ 0?(2mBPE—L?)/ 7 ground-state energy for a given E, ;= (A°/mb?)(af,/2),

ol o should be smaller than the Fermi energy= (2/mb’)N,.
and o(J)=w((J). For the case in Fig. 6, we have=1,  Therefore, |- is the largestl that satisfies the relation

about 12, which matches well the result in Fig. 7. We are interested in electrons with energieésiear the
Fermi energy(hereafter referred to as Fermi electrpiisat
IIl. TWO-DIMENSIONAL ELECTRON GAS satisfy eg—AE/2<E<er+AE/2 with AE~KgT. There-

The system we describe in Sec. Il might possibly be real-fore’ unlike the; anquss in Sec. Il, we are varying the. angular
momentum with fixed energy. Below we will obtain two

ized in the laboratory at a semiconductor interface where %quations using classical formulas based on the fact that the

two-dimensional electron gas can form. The circular outer . .
. 9 ) . . quantum results agrees very well with classical results even
walls of radiusb are formed at the interface with metallic

. . i i o with low-energy states.
gates to which a negative voltage is applied. At sufficiently The frequencyw , of a Fermi electron as a function of

low temperatures the motion of the electrons will be ballistic. ; . i
They will not experience impurities. In this circular system,I ol can be obtained using the = classical fo.rmula
our model has a fiber with negligible radius containing a®LY(E)=27E/\2mb’E—LZ (cf. Ref.[5] or the Appendi,
confined magnetic flubycosgt), which provides the vec-
tor potential and the boundary conditionrat 0.
It is useful to consider parameters appropriate for a wp 1 =0f_,(E= €)= (W) —. (16)
micrometer-size semiconductor device. We choose the elec-
tron density to ben,=6.4x10" m~2, the radiusb=1
pm, and electron effective mass=0.067n,, wherem, is  This function is plotted in Fig. @).
the mass of the electron. The Fermi eneggyof the two- The numbeNg | of Fermi electrons as a function btan
dimensional electron gas is be obtained using two relations. It is proportional to the num-
ber of states at the Fermi surface d& *(AJ),. But
_ ) (AJ),<AE(d EE'(J)/dJ)*l, AE~kgT for any I, and
Bl ) Nev (15) cl
mb? (dEP(J)/dJ)e- .= wg, . Therefore,
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1 2N 12 surface as a function of the angular momentum. For a given
Ng o — N, (17) Fermi energy, the angular momentum has an upper limit and

utl € the natural frequency of an electron has a minimug at
The fraction of Fermi electrons with angular momentlin which the _angular momentum is Z€r0. If the extern_al fre-
is plotted in Fig. &b). quencyw is smaller thar_wcr, there is no electron havmg a
primary resonance. lfb, is larger thanw., electrons with
certain angular momenta will have primary resonances.
These results might be of interest for conductance studies
in semiconductor microstructures such as high-mobility
GaAs-Al,Ga; ,As heterostructures at low temperature
since this system exhibits a controlled transition to chaos. In
that case, phonon-electron scattering and impurity scattering
5 can be neglected because their mean free paths are known to
W= OF | o= (_) 72N, (18)  be much longer than the size of the systemilum) [9]. We
' mb? can also neglect Coulomb interactioghen T~1 K, the

] . mean free path is theoretically on the order of 10n in the
such that whenw, is lower thanw,, no Fermi electron has gystem given in Sec. 1(110]).

a primary resonance due to tigeterm. (There exist Fermi
electrons that have a primary resonance due tosthéerm
satisfying wo= wr | When we/2< wo<w. . But, from here ACKNOWLEDGMENTS

on, we will ignore primary resonances due to 1B term The authors wish to thank the Welch Foundation, Grant
assuming thag is small enough.As w, reacheswy, the N, 1051, for partial support of this work, and the University
first primary resonance due to tieterm starts to occur at  of Texas High Performance Computing Center for use of its

I=1. (In the model discussed here, states withO have facilities. The authors also wish to thank Sukkeun Kim for
been excluded due to the boundary condition provided by thgjs help on computer programs.

fiber) If wq increases further, Fermi electrons with different
| (satisfyingwo= wg ) have primary resonances. Also, when
wq is larger than 2, two kinds of primary resonances will APPENDIX: CLASSICAL RESULTS

start to exist, one at=1" (the s,facond primary resonance | this appendix we briefly review the classical res(#ik
®o=2wg ) and the other at=1" (the first primary reso- \ye treat electromagnetic waves classically in our model be-

nancewo= we ). _ o causewg is low. The exact form of the vector potential after
For example, if wo=1.254<10"* Hz (which satisfies golving Maxwell's equations is

wo== (1)|:’|:100 and wo= 1-1551)L:10(Y1,min: 1.1551)C|—), Fermi

Interestingly, it is always true thatwg;=w min
[@L = 1pmin= (/M) 271 and this is an equality if= N,
which can mean that whany=vwg |, the vth primary reso-
nance due to th@ term can occur for the Fermi electrons
with the angular momentur®.. Therefore, we can find the
critical frequencyw,,

electrons withl =100 will have the first primary resonance ®. J.(ka) N+ (kr)co )= J.(kr)si t
due to theg term. In Fig. 6 we showed classical and quan- A(r,t)= — w(ka)[N(krjcod wol) — Ju(kr)sin(wol)] ”
tum results for this particular resonance. We can obtain an ma Jo(ka)Ny(ka) —Jy(ka)No(ka)

estimate of the range of the angular momektahat partici- (A1)

pate in the resonance. Using Efj4), Aw=AJ(dw/dJ),and " ora<r <b (wherek 16). 1f wg s H
_ “1 B in the regiona<r<b (wherek= wy/c). If w, is low enoug
éelm saAywt(rgtufhle/dr:a)rl\;le bvf\ilse :::r;)(?rztﬁnwlal fgg’\/\;gi;ﬁe to satisfy kb<1, the vector potential takes the form
small and that Fermi electrons with the angular moment Ar,D)=(do/2mr)cosgl)e, by using the asymptotic

%, when | satisfies|| —1|<Al/2 with w= "eM3orms of Bessel functions.
» whenl salisfies = WIh @ =vaog, ., are in The classical Hamiltonian becomes
their vth primary resonance zones.

Pr [py=p codwot) |2
2m 2mr?

We have studied the model of a 2D electron gas in a (A2)
circular cavity with hard walls and a weak time-periodic ra-
dial potential. We have seen that the quantum chaotic behawhere 8=e® /27, andV, andV, are the potentials associ-
ior of our model corresponds well with classical results whenated with the infinitely hard walls at=a andr=b. Since
the angular momentum is large. We have observed eme is a cyclic coordinate, we can lpt,=L and we view this
gence and bifurcation of primary resonances, which can bgystem as the system with one degree of freedom with time
characterized by irregular mixing of Floquet states, and welependencé¢l.5 degrees of freedom
have also observed them in the Husimi plots. Husimi plots Now let us consideHS, which is the free Hamiltonian
matched classical strobe plots very well except in the region

IV. DISCUSSION AND CONCLUSIONS HY(t)= +V,(r)+Vp(r),

near the infinitely hard walls. Husimi distribution functions 2 2

i | p: L
go to zero near Wa!ls due to the b_oundary condmon. One of HE(r,p) = o=+ =— + V(1) + Vy(r). (A3)
the consequences is that fixed points that reside on the walls 2m - 2mr

in classical strobe plots cannot be seen in the Husimi plots.
We viewed the problem as a noninteracting Fermi gaslt is useful to obtain a canonical transformation from
We discussed some properties of the electrons at the Ferrtii,p,) to the action-angle variablel{#), wherelJ is given by
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1 J2mE L2 whereb, is the coefficient of the Fourier cosine series of
I=5- ff) prdr=— \/ 2_ T r~2(J,6) and is given by
L et L (Ad) 2mE d6 cog v6)
— cos : !
Jame | bvame b,(9)=b,(E.L)= " 2 -

6
L2+?(2mb2E—L2)

Then, withH, as a function of], EE'(J) can be obtained by
solving Eq.(A4) as a function ofl. The natural frequency of

the motion is
The two sets of traveling cosine waves in E46) give

| . dEE'(J) 27E rise to infinite sets of primary resonances in the phase space.
o (J)= 0= = . (A5 The cosine waves that are proportional gogive rise to
dJ V2mbPE—L?

resonance zones that dominate the phase space for gmall
SO wﬁ' has a minimum wL,mm(=27TL/mb2) at  On the other hand, those proportional@d give rise to reso-

E=E_|_ (=LY mb?). nance zones that dominate the phase space for fargaere
Let us now write the full Hamiltonian in terms ofi(g),  are also two sets of resonance conditioag= vw{'(J) for
. primary resonances due to tieterm andwoz(v/2)wf'(J)
L for primary resonances due to i3 term. Action variables
clyy — ecl o _
HAD=E[(J) ’82m Vlz_m b”l(‘])cos{ V10~ wol) J that satisfy those conditions locate the positions of the
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