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Bifurcation of quantum nonlinear resonances induced by a time-periodic vector potential

Suhan Ree and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 5 August 1996!

The quantum mechanics of a two-dimensional ideal electron Fermi gas in a cylindrical cavity in the presence
of a weak time-periodic vector potential is studied. Floquet eigenstates are obtained numerically and Husimi
distribution functions are used to show the bifurcation and appearance of quantum nonlinear resonances. For
electrons at the Fermi surface, if the frequency of the vector potentialv0 is lower than a certain critical
frequencyvcr then there is no electron having a primary resonance. Ifv0 is higher thanvcr , electrons with
certain angular momenta will have primary resonances.@S1063-651X~97!03203-0#

PACS number~s!: 05.45.1b, 03.65.Sq, 73.20.Dx
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I. INTRODUCTION

The transition to chaos in classical systems occurs in
gions of the classical phase space where self-similar se
nonlinear resonances exist, grow, and overlap as a param
of the system is changed. Nonlinear resonances have
been observed in the quantum counterpart of these syst
although they only form self-similar families down scales
the phase space of order\ @1#. The effect of an underlying
classical chaos on the quantum counterpart of these syst
especially systems with a periodic time-driven potential, i
topic that has received much attention recently. To inve
gate those systems quantum mechanically, the Floq
theory has been used@2–4#.

The model we consider consists of a two-dimensio
~2D! noninteracting electron gas confined by a circular h
wall of radiusb. We will describe the system in cylindrica
coordinates (r ,f). Because the system has circular symm
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try, the angular momentump̂f of the electrons is a conserve

quantity (@Ĥ,p̂f#50). As a consequence, the system can
treated as a system with one degree of freedom, along
radial direction.

We can induce chaos in this system with a we
time-periodic radial vector potential. We can create the rad
vector potential in the following manner. Let us assum
the electron has massm and chargee and at the center of the
circular cavity there is a fiber of negligible radiusa that
has a weak confined alternating magnetic fluxF0cos(v0t)
with frequencyv0. We assume that the only effect of th
fiber is to provide a time-periodic vector potential
the circular two-dimensional cavity. It also imposes t
boundary conditionC(r50,f)50 on the electron wave
functions. We will ignore interactions between electrons. F
small v0 @(v0 /c)b!1#, the Schro¨dinger equation has
the form
i\
]C

]t
5F @ p̂2eA~ r̂ ,t !#2

2m
1Va~ r̂ !1Vb~ r̂ !GC5F2

\2

2m

]2

]r 2
2

\2

2mr

]

]r
2

F\i ]

]f
2b cos~v0t !G2
2mr2

1Va~r !1Vb~r !GC, ~1!
re-
III,
ed.

n-
tates
whereA5(F0 /2p r̂ )cos(v0t)ef , b5eF0/2p, andVa and
Vb are potentials associated with infinitely hard walls
r5a and r5b. ~See the Appendix for the classical Ham
tonian and the exact form of the vector potential of th
model.!

In a previous paper@5# on the classical version of thi
system we found that the frequencyv0 plays an important
role in determining the manner in which chaos appears in
system. For a given classical angular momentum, asv0 in-
creases there is a frequency at which nonlinear primary r
nances start to emerge and also bifurcate immediately.
frequencyv0 also determines the locations of primary res
nances in phase space.

In Sec. II, we first obtain the energy eigenstates of
unperturbed system (b50) and then use these to obtain t
Floquet eigenstates of the full Hamiltonian of the mod
t
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Husimi plots of the Floquet states are used to compare
sults from classical and quantum mechanics. In Sec.
properties of electrons with the Fermi energy are examin
Finally, in Sec. IV, we make some concluding remarks.

II. ONE-ELECTRON SYSTEM

A. Free Hamiltonian „b50…

It is useful to study the free HamiltonianĤ0 ~when
b50) before considering the full Hamiltonian. The eige
states of the unperturbed system are simultaneous eigens
of the HamiltonianĤ0 and the angular momentump̂f . We
denote the simultaneous eigenstates asu l ,n& so that

Ĥ0u l ,n&5El ,nu l ,n&, p̂fu l ,n&5 l\u l ,n&. ~2!
2409 © 1997 The American Physical Society
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The energy eigenvalue problem in real space is given by

F2
\2

2m

]2

]r 2
2

\2

2mr

]

]r
2

1

2mr2
]2

]f2 1Va~r !1Vb~r !G
3^r ,fu l ,n&5El ,n^r ,fu l ,n&, ~3!

with the energy eigenstates

^r ,fu l ,n&5
A2

bJl11~a l ,n /b!
Jl S a l ,nr

b D 1

A2p
eilf ~4!

for u l u>1 and n>1. The energy eigenvalues a
El ,n5(\2/mb2)(a l ,n

2 /2), where a l ,n is the nth zero of
Jl(x), the Bessel functions of the first kind.~States with
l50 are excluded due to the boundary condition of o
modelCur5050. We assumea.0.!

This system may also be studied classically@5#, and some
key results are summarized in the Appendix. We can co
pare the energy eigenvaluesEl ,n for the quantum system
with the energyEL

cl(J) of a classical particle in the circula
cavity, whereJ is the classical action defined in the Appe
dix. The quantization condition from the semiclassical the
J5(n2 1

4)\ is used@6# to get the relation between the cla
sical actionJ and the quantum numbern. In Fig. 1 we com-
pare classical and quantum energies for angular mom
L510\ andL5100\, respectively. They agree to very goo
accuracy even at low energies whereu l u and n are small.
We can also compare the quantum frequenc
v l ,n[(El ,n112El ,n)/\ with the classical natural frequenc
vL
cl(J)5dEL

cl(J)/dJ. In Fig. 2 we compare classical an
quantum frequencies for angular momentaL510\ and
L5100\, respectively. Since the action variable can take
a continuous range of values, the classical frequency
always have a minimum value. It is this feature that allow

FIG. 1. EnergiesEl ,n and EL
cl(J) from quantum and classica

mechanics with respect to the quantum numbern and the action
J, respectively.~a! L510\. ~b! L5100\. Solid curvesE5EL

cl(J)
show classical results and points (L) E5El ,n show quantum re-
sults.
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bifurcation and creation of new resonances as the freque
of the magnetic flux is varied. From Fig. 2 we see that
quantum system will not always have a minimum beca
the action variable is quantized. For angular moment
L510\ the classical minimum lies below the lowest qua
tum state so no bifurcation can occur in the quantum syst
However, for angular momentumL5100\ there is hope of
seeing a bifurcation in the quantum system because the m
mum does exist.

Let us define an energyĒL such that, for the electron with
the angular momentumL5 l\ the frequencyvL

cl(J) has a
minimum valuevL,min at energyE5ĒL . From the quantum
energy eigenvalues, we find that for 1<u l u<11, ĒL,El ,1 ;
for 12<u l u<25, El ,1,ĒL,El ,2 ; for 26<u l u<40, El ,2,ĒL

,El ,3 , and so on. Thus the location ofĒL shifts to higher-
energy states asu l u is increased.

B. Full Hamiltonian „bÞ0…

The full Schrödinger equation is given in Eq.~1!. We can
write the full Hamiltonian in the form

Ĥ~ t !5Ĥ02b
p̂f

mr̂2
cos~v0t !1b2

1

2mr̂2
cos2~v0t !. ~5!

The full Hamiltonian has two perturbation terms: one pr
portional tob with frequencyv0 and another proportional to
b2 with frequency 2v0. Since@Ĥ,p̂f#50, the angular mo-
mentum is still a constant of motion and the radial and
gular motions remain decoupled. However, the radial mot
now is affected by a time-periodic potential energy that co
tains two different frequenciesv0 and 2v0.

In Ref. @5# we found for the classical system that th
resonance condition for thenth primary resonance due to th
b term isv05nvL

cl(J). Similarly, the resonance conditio

FIG. 2. Frequencies v l ,n5(El ,n112El ,n)/\ and
vL
cl(J)5dEL

cl(J)/dJ from quantum and classical mechanics wi
respect to the quantum numbern and the actionJ respectively.~a!
L510\. ~b! L5100\. Solid curvesv5vL

cl(J) show classical re-
sults and points (L) v5v l ,n show quantum results.
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55 2411BIFURCATION OF QUANTUM NONLINEAR RESONANCES . . .
for the nth primary resonance due to theb2 term is
v05(n/2)vL

cl(J). Let vL,min denote the minimum value o
the classical frequencyvL

cl(J), i.e., the point where the bifur
cation can occur. Then, ifv0,

1
2vL,min , there is no primary

resonance and asv0 reaches
1
2vL,min the primary resonance

due to theb2 term starts to emerge and bifurcate imme
ately @v05

1
2vL

cl(J) has two solutions ifv0.
1
2vL,min#. Fur-

thermore, ifv0 reachesvL,min , the primary resonance due t
theb term starts to emerge.

In the quantum system, as we saw in Fig. 2, ifu l u is small
a bifurcation cannot occur becausev l ,n does not have two
branches. On the other hand, for largeu l u, we can expect tha
the bifurcation process exists in quantum mechanics. We
view this as a kind of suppression of resonances due to
finiteness of\. ~For fixedL, the smaller\, the largerl .!

In order to see this bifurcation process occur in the qu
tum system, we will compute the Floquet eigenstates
show their behavior in the classical phase space using
simi distribution functions@7#. The procedure to obtain Flo
quet states is as follows. The full time-periodic Hamiltoni
Ĥ(t) @Ĥ(t)5Ĥ(t1T0) with T052p/v0# can be represente
in the basis$u l ,n&%,

Ĥ~ t !5(
l ,n

(
l 8,n8

Hnn8
l

~ t !d l ,l 8u l ,n&^ l 8,n8u, ~6!

where

Hnn8
l

~ t !5S \2

2mb2D $a ln
2 dnn82cnn8

l
@2l b̃ cos~v0t !

2b̃2cos2~v0t !#%, ~7!

with L5 l\, b5b̃\, and

cnn8
l [

A2
Jl11~a ln!Jl11~a ln8!

E
0

1

dx Jl~a lnx!Jl~a ln8x!/x.

In order to compute the Floquet states numerically
must truncate this matrix, but we can do it in such a man
that the results we are interested in are not affected. In te
of theN3N truncated matrix, the Schro¨dinger equation be-
comes

i\
d

dt
Cn

l ~ t !5 (
n851

N

Hnn8
l

~ t !Cn8
l

~ t !, ~8!

where Cn
l (t)5^ l ,nuC(t)&. We integrate the equationN

times from t50 to t5T0 with initial conditions
uC(t50)&5u l ,n& (1<n<N). Each integration gives us on
column of the matrix representation of the evolution opera
Û(T0), which satisfy the equation

uC~ t5T0!&5Û~T0!uC~ t50!&. ~9!

Eigenvectors of this unitary operator are the Floquet sta
uCF,a

l &, which satisfy

Û~T0!uCF,a
l &5eiVaT0uCF,a

l &, ~10!
-
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whereVa is the Floquet eigenvalue, sometimes called
quasienergy. After solving the eigenvalue problem, we h
representations ofN Floquet stateŝl ,nuCF,a

l & (1<a<N).
(^ l ,nuCF,a

l & obtained from the truncated Hamiltonian is
good approximation only if̂ l ,nuCF,a

l & has all its support on
states u l ,n& with n,N.! For each Floquet eigenstat
uCF,a

l &, we can compute the Husimi distribution function

Fa
l ~r 0 ,pr0![ z^r 0 ,pr0 ; l uCF,a

l & z2, ~11!

where ur 0 ,pr0 ; l &5ur 0 ,pr0&u l &, ur 0 ,pr0& is a coherent state
which in the position representation has the form

^r ur 0 ,pr0&5
1

Ar
S 1

2pd2D
1/4

3expS 2
~r2r 0!

2

4d2
1

i

\
pr0~r2r 0! D , ~12!

and u l & is an eigenstate ofp̂f . Thus the coherent state is
Gaussian wave packet in (r ,pr) space centered at (r 0 ,pr0)
with dispersionsDr5d, andDpr5\/2d. We should note
that the use of̂ r ur 0 ,pr0& for a system with hard walls doe
not accurately represent the system very near the hard w
However, it is not a serious problem ifd/b!1 unlessr 0 is
close to the wall. Then, an appropriate choice ofd is impor-
tant in the Husimi plots. For all Husimi plots in this pape
d was chosen to make the lengths of the dispersionsDr5d
andDpr5\/2d the same. The ratiod/b was about 0.03 for
all Husimi plots in this paper. The values ofFa

l (r 0 ,pr0) near
the walls are not reliable. However, due to the bound
conditions, the Floquet states go to zero at the walls
thereforeFa

l (r 0 ,pr0) also goes to zero at the walls so th
difficulty with coherent states near the walls is not a serio
problem.

In Figs. 3–5, we observe the emergence and bifurca

FIG. 3. m50.067me , b51 mm, b55\, L5100\, and
v050.9973(vL,min/2). vL,min/255.42831011 Hz in this case.~a!
Classical strobe plot.~b! and ~c! Husimi plots with d50.0309
mm.
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2412 55SUHAN REE AND L. E. REICHL
of primary resonances due to theb2 term whenL5100\ as
v0 increases near

1
2vL,min in both classical and quantum me

chanics. In these figures, we have shown three ca
v050.9973(vL,min/2) ~Fig. 3!. v051.001(vL,min/2) ~Fig.
4!, andv051.008(vL,min /2) ~Fig. 5!. ~We use numbers ap
plicable to microstructures formed at the interface betw
GaAs and AlxGa12xAs: m50.067me , b51mm, and
vL,min52pL/mb251.08631012 Hz whenL5100\, where
me is the mass of the bare electron.! Classical strobe plots
show how bifurcation occurs continuously. On the oth
hand, the Husimi plots are not as clear as strobe plots. H
ever, we can observe the quantum counterpart of class

FIG. 4. m50.067me , b51 mm, b55\, L5100\, and
v051.001(vL,min/2). vL,min/255.42831011 Hz in this case.~a!
Classical strobe plot.~b! and ~c! Husimi plots with d50.0309
mm.

FIG. 5. m50.067me , b51 mm, b55\, L5100\ and
v051.008(vL,min/2). vL,min/255.42831011 Hz in this case.~a!
Classical strobe plot.~b! and ~c! Husimi plots with d50.0309
mm.
es

n

r
-
al

results, i.e., we can find a corresponding classical orbit in
strobe plot for each Husimi plot of a Floquet state. For ea
case~Figs. 3–5!, we choose two Floquet states that repres
the case best. For the case ofv050.9973(vL,min /2), Floquet
states in Figs. 3~b! and 3~c! correspond to distorted orbits i
Fig. 3~a!, which shows no resonance zone. For the case
v051.001(vL,min/2), we observe a resonance zone h
emerged. The Floquet state in Fig. 4~b! corresponds to the
unstable fixed point near (r50.7 mm, pr50! and the Flo-
quet state in Fig. 4~c! corresponds to an orbit surroundin
that point. They both come from the same resonance z
~both are mixed states ofu l5100, n54–6& mostly!. On the
other hand, the case ofv051.008(vL,min/2) has two separate
resonance zones. The Floquet state in Fig. 5~b! ~mixed state
of u l5100, n58–12& mostly! corresponds to the stabl
fixed point near (r.0.65 mm, pr50) in Fig. 5~a! and the
Floquet state in Fig. 5~c! ~mixed state ofu l5100, n54–6&
mostly! corresponds to the stable fixed points ne
(r51mm, pr.60.95310226 kg m/sec) in Fig. 5~a!. We
can say that the resonance zone for the quantum system
bifurcated as it does for the classical case. There was
bifurcation whenL510\ as expected~plots are not shown in

FIG. 6. Example of the first primary resonance due to theb
term when m50.067me , b51 mm, b55\, L5100\, and
v051.155vL,min56.26931011 Hz. ~a! Classical strobe plot.~b! and
~c! Husimi plots withd50.0309mm.

FIG. 7. Collection of probability distribution of Floquet state
( z^ l ,nuCF,a

l & z2 vs n for 1<a<100).
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55 2413BIFURCATION OF QUANTUM NONLINEAR RESONANCES . . .
this paper! because as we show in Fig. 2~a!, there are no
quantum states available to support the resonance.

For the later use, we also look at an example of the fi
primary resonance due to theb term whenL5100\ and
v051.155vL,min5725.7(\/mb2). From the equation
v05vL

cl(J), we can find that nearJ.21\ (n.21) we have
a resonance zone.@See Fig. 2~b!.# In Fig. 6 we observe clas
sical and quantum resonances for this case. Figure 7 is
diagram that is the collection of probability distributions
all Floquet states (1<a<100) with the basis
$u l ,n&,1<n<100%. It enables us to look at the states gl
bally as we do in classical strobe plots. For example, we
distinguish irregular and regular zones; nearn.21 we have
a resonance zone with the width of about 20 and ther
another small resonance zone nearn.60 that is a fractional
resonance satisfying the resonance conditionvL

cl(J)5 3
2v0.

We will ignore the scatter of points forn.90 because the
truncation error is not small in that region.

The half-width (DJ) of eachnth primary resonance du
to theb term can be calculated approximately classically@8#
by introducing the Hamiltonian that isolates the resona
term,

Hcl~J,u!.H0~J!1V~J!cos~nu2v0t !. ~13!

Then the half-width of this resonance atJ5J8 is approxi-
mately

~DJ!.2AuV~J8!u@dv~J!/dJ#J5J8
21 , ~14!

wherev(J)5dH0(J)/dJ.
For our model,V(J)52(Lb/2m)bn„EL

cl(J),L…,

bn~E,L !5
2mE

p E
2p

p du cos~nu!

L21u2~2mb2E2L2!/p2,

and v(J)5vL
cl(J). For the case in Fig. 6, we haven51,

b55\, L5100\, andJ8521\; then the half-width (DJ) is
about 12, which matches well the result in Fig. 7.

III. TWO-DIMENSIONAL ELECTRON GAS

The system we describe in Sec. II might possibly be re
ized in the laboratory at a semiconductor interface wher
two-dimensional electron gas can form. The circular ou
walls of radiusb are formed at the interface with metall
gates to which a negative voltage is applied. At sufficien
low temperatures the motion of the electrons will be ballis
They will not experience impurities. In this circular syste
our model has a fiber with negligible radius containing
confined magnetic fluxF0cos(v0t), which provides the vec-
tor potential and the boundary condition atr50.

It is useful to consider parameters appropriate for
micrometer-size semiconductor device. We choose the e
tron density to bene56.431015 m22, the radiusb51
mm, and electron effective massm50.067me , whereme is
the mass of the electron. The Fermi energyeF of the two-
dimensional electron gas is

eF5
p\2

m
ne[S \2

mb2DNe , ~15!
t

he

n

is

e

l-
a
r

y
.
,

a
c-

whereNe can be regarded as the total number of electron
the system (23104 for the system considered here wi
eF53.6310221 J!. For a given Fermi energyeF there is an
upper limit l F of the angular momentumu l u because the
ground-state energy for a givenl , El ,15(\2/mb2)(a l ,1

2 /2),
should be smaller than the Fermi energyeF5(\2/mb2)Ne .
Therefore, l F is the largest l that satisfies the relation
a l ,1
2 ,2Ne . For our system,l F.189.
We are interested in electrons with energiesE near the

Fermi energy~hereafter referred to as Fermi electrons! that
satisfy eF2DE/2<E<eF1DE/2 with DE;kBT. There-
fore, unlike the analysis in Sec. II, we are varying the angu
momentum with fixed energy. Below we will obtain tw
equations using classical formulas based on the fact tha
quantum results agrees very well with classical results e
with low-energy states.

The frequencyvF,l of a Fermi electron as a function o
l can be obtained using the classical formu
vL
clJ(E)52pE/A2mb2E2L2 ~cf. Ref.@5# or the Appendix!,

vF,l[vL5 l\
cl ~E5eF!5S \

mb2D 2pNe

A2Ne2 l 2
. ~16!

This function is plotted in Fig. 8~a!.
The numberNF,l of Fermi electrons as a function ofl can

be obtained using two relations. It is proportional to the nu
ber of states at the Fermi surface soNF,l}(DJ) l . But
(DJ) l}DE(dEL

cl(J)/dJ)21, DE;kBT for any l , and
(dEL

cl(J)/dJ)E5eF
5vF,l . Therefore,

FIG. 8. When b51 mm, the Fermi energye becomes
(\2/mb2)(2.03104). l F is 189. ~a! vF,l ~the natural frequency of
Fermi electrons with respect tol ), and~b! PF,l[NF,l /NF ~the frac-
tion of Fermi electrons with angular momentuml\, which can be
interpreted as the probability of finding Fermi electrons with t
angular momentum l\ within all Fermi electrons!.
NF[(

2 l F

l F NF,l .
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2414 55SUHAN REE AND L. E. REICHL
NF,l}
1

vF,l
}A2Ne2 l 2

Ne
. ~17!

The fraction of Fermi electrons with angular momentuml\
is plotted in Fig. 8~b!.

Interestingly, it is always true thatvF,l>vL,min

@vL5 l\,min5(\/mb2)2p l and this is an equality ifl5ANe#,
which can mean that whenv0.nvF,l , thenth primary reso-
nance due to theb term can occur for the Fermi electron
with the angular momentuml\. Therefore, we can find the
critical frequencyvcr ,

vcr[vF,l505S \

mb2DpA2Ne ~18!

such that whenv0 is lower thanvcr , no Fermi electron has
a primary resonance due to theb term. ~There exist Fermi
electrons that have a primary resonance due to theb2 term
satisfyingv05

1
2vF,l whenvcr/2,v0,vcr . But, from here

on, we will ignore primary resonances due to theb2 term
assuming thatb is small enough.! As v0 reachesvcr , the
first primary resonance due to theb term starts to occur a
l51. ~In the model discussed here, states withl50 have
been excluded due to the boundary condition provided by
fiber.! If v0 increases further, Fermi electrons with differe
l ~satisfyingv05vF,l) have primary resonances. Also, whe
v0 is larger than 2vcr , two kinds of primary resonances wi
start to exist, one atl5 l 8 ~the second primary resonanc
v052vF,l 8) and the other atl5 l 9 ~the first primary reso-
nancev05vF,l 8).

For example, if v051.25431012 Hz ~which satisfies
v0.vF,l5100 and v051.155vL5100\,min51.155vcr), Fermi
electrons withl.100 will have the first primary resonanc
due to theb term. In Fig. 6 we showed classical and qua
tum results for this particular resonance. We can obtain
estimate of the range of the angular momentaD l that partici-
pate in the resonance. Using Eq.~14!, Dv.DJ(dv/dJ), and
D l.2Dv(dvF,l /dl) l5 l 8

21 , we can getD l;20Ab̃. Then we
can say that the range ofl is proportional toAb whenb is
small and that Fermi electrons with the angular momen
l\, when l satisfiesu l2 l 8u<D l /2 with v05nvF,l 8, are in
their nth primary resonance zones.

IV. DISCUSSION AND CONCLUSIONS

We have studied the model of a 2D electron gas in
circular cavity with hard walls and a weak time-periodic r
dial potential. We have seen that the quantum chaotic be
ior of our model corresponds well with classical results wh
the angular momentum is large. We have observed em
gence and bifurcation of primary resonances, which can
characterized by irregular mixing of Floquet states, and
have also observed them in the Husimi plots. Husimi pl
matched classical strobe plots very well except in the reg
near the infinitely hard walls. Husimi distribution function
go to zero near walls due to the boundary condition. One
the consequences is that fixed points that reside on the w
in classical strobe plots cannot be seen in the Husimi plo

We viewed the problem as a noninteracting Fermi g
We discussed some properties of the electrons at the F
e
t

-
n

a,

a

v-
n
r-
e
e
s
n

f
lls
.
s.
mi

surface as a function of the angular momentum. For a gi
Fermi energy, the angular momentum has an upper limit
the natural frequency of an electron has a minimumvcr at
which the angular momentum is zero. If the external f
quencyv0 is smaller thanvcr , there is no electron having
primary resonance. Ifv0 is larger thanvcr , electrons with
certain angular momenta will have primary resonances.

These results might be of interest for conductance stu
in semiconductor microstructures such as high-mobi
GaAs-AlxGa12xAs heterostructures at low temperatu
since this system exhibits a controlled transition to chaos
that case, phonon-electron scattering and impurity scatte
can be neglected because their mean free paths are know
be much longer than the size of the system (;1mm! @9#. We
can also neglect Coulomb interactions~when T;1 K, the
mean free path is theoretically on the order of 102 mm in the
system given in Sec. III@10#!.
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APPENDIX: CLASSICAL RESULTS

In this appendix we briefly review the classical results@5#.
We treat electromagnetic waves classically in our model
causev0 is low. The exact form of the vector potential afte
solving Maxwell’s equations is

A~r ,t !5
F0

pa2
J1~ka!@N1~kr !cos~v0t !2J1~kr !sin~v0t !#

J0~ka!N1~ka!2J1~ka!N0~ka!
ef

~A1!

in the regiona,r,b ~wherek5v0 /c). If v0 is low enough
to satisfy kb!1, the vector potential takes the form
A(r ,t).(F0 /2pr )cos(v0t)ef by using the asymptotic
forms of Bessel functions.

The classical Hamiltonian becomes

Hcl~ t !5
pr
2

2m
1

@pf2b cos~v0t !#
2

2mr2
1Va~r !1Vb~r !,

~A2!

whereb5eF0/2p, andVa andVb are the potentials assoc
ated with the infinitely hard walls atr5a and r5b. Since
f is a cyclic coordinate, we can letpf5L and we view this
system as the system with one degree of freedom with t
dependence~1.5 degrees of freedom!.

Now let us considerH0
cl , which is the free Hamiltonian

H0
cl~r ,pr !5

pr
2

2m
1

L2

2mr2
1Va~r !1Vb~r !. ~A3!

It is useful to obtain a canonical transformation fro
(r ,pr) to the action-angle variable (J,u), whereJ is given by
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J5
1

2p R prdr5
A2mE

p FAb22
L2

2mE

2
L

A2mE
cos21S L

bA2mE
D G . ~A4!

Then, withH0 as a function ofJ, EL
cl(J) can be obtained by

solving Eq.~A4! as a function ofJ. The natural frequency o
the motion is

vL
cl~J!5 u̇5

dEL
cl~J!

dJ S 5
2pE

A2mb2E2L2
D , ~A5!

so vL
cl has a minimum vL,min(52pL/mb2) at

E5ĒL (5L2/mb2).
Let us now write the full Hamiltonian in terms of (J,u),

Hcl~ t !5EL
cl~J!2b

L

2m (
n152`

`

bn1
~J!cos~n1u2v0t !

1b2
1

8m (
n252`

`

bn2
~J!cos~n2u22v0t !

1b2
1

4m
r22~J,u!, ~A6!
si-
wherebn is the coefficient of the Fourier cosine series
r22(J,u) and is given by

bn~J!5bn~E,L !5
2mE

p E
2p

p du cos~nu!

FL21 u2

p2 ~2mb2E2L2!G .

The two sets of traveling cosine waves in Eq.~A6! give
rise to infinite sets of primary resonances in the phase sp
The cosine waves that are proportional tob give rise to
resonance zones that dominate the phase space for smb.
On the other hand, those proportional tob2 give rise to reso-
nance zones that dominate the phase space for largeb. There
are also two sets of resonance conditions;v05nvL

cl(J) for
primary resonances due to theb term andv05(n/2)vL

cl(J)
for primary resonances due to theb2 term. Action variables
J that satisfy those conditions locate the positions of
nth primary resonances in (J,u) space@and therefore in
(r ,pr) space#. Finally, the fact thatvL

cl(J) has a minimum
valuevL,min means that ifv0 is lower thanvL,min/2 there is
no primary resonance and asv0 reachesvL,min/2 we can
observe emergence and bifurcation of the primary resona
due to theb2 term.
8.
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